US EPA Design for the Environment Formulator Initiative **Category**: Nonionic Surfactants Positive Environmental Profile: Rapid degradation to non-toxic byproducts. ## Selected Properties for Representative Nonionic Surfactants ^a | Name
CAS Number | Structure | cmc, ^b
mg/L | HLB° | Aquatic concern conc., ^d ppm | Biodeg. ^e Rate Primary Ultimate | Biodegradation Products and Comments | |---|-------------|---------------------------|---------------|---|--|--| | Nonylphenol ethoxylate (9.5 EO) 9016-45-9 | | 41 ^f | 12.9 | 0.001 | days-
weeks
months-
longer | Typical alkylphenol ethoxylate (APE). Degradation products such as nonylphenol are more toxic and more persistent than the parent. | | Alcohols, C12-16,
ethoxylated (9 EO)
68551-12-2 | ~~~~°~°~°~° | 36-83 ^g | 13.4 | 0.02 | days-
weeks
weeks-
months | Products are <u>less toxic</u> than the parent. More positive environmental profile (EP). | | Fatty acids, coco-, ethoxylated 61791-29-5 | 0 100 | | 13.0-
13.5 | 0.040 | days
weeks | Products are <u>less toxic</u> than the parent. Rapid hydrolysis of the ester destroys surfactant properties. More positive EP. | a. By nature, surfactants are often toxic to aquatic organisms because the properties that improve surfactancy also tend to increase toxicity. Surfactants with positive environmental profiles degrade rapidly to non-toxic products. For example, surfactants with ester linkages connecting the hydrophobic and hydrophilic groups are degraded by hydrolysis to yield non-surfactant products that are typically less toxic than the parent compounds. | Name
CAS Number | Structure | cmc, ^b
mg/L | HLB° | Aquatic
concern
conc., ^d
ppm | Biodeg. ^e Rate Primary Ultimate | Biodegradation Products and Comments | |---|------------|----------------------------|------|--|--|---| | Dodecanamide, N-(2-hydroxyethyl) 142-78-9 | | | | 0.040 | days
weeks | Used as a foamer. Products are <u>less toxic</u> than the parent. Significant hydrolysis to ethanolamine not expected. More positive EP. | | D-Glucopyranose,
oligomeric, decyl octyl
glycosides
68515-73-1 | | 4800-
7300 ^f | 13 | 0.47 | hours-
days
days-
weeks | Low surfactant toxicity. Products are less toxic than the parent. More positive EP. | | tert-Dodecanol,
ethoxylated
9004-83-5 | S (0)7 0 | | 12.7 | 0.040 | days-
weeks
weeks-
months | Although biodegradation is hindered at the site of branching, products are <u>less</u> toxic than the parent. More positive EP than APEs. | | Oxiranemethanol, homopolymer, (Z)-tetradecyl 2-butenedioate 183073-13-4 | | 8.7 ^h | | 0.006 | hours-
days
weeks | Products are <u>less toxic</u> than the parent. Rapid hydrolysis of the ester destroys surfactant properties. More positive EP. Not commercialized. | - b. The cmc is the critical micelle concentration. In general, surfactants must be present in amounts higher than the cmc to be effective detergents. - c. The HLB is the hydrophile-lipophile balance. This quantity is used to describe the hydrophilic character of a surfactant. The higher the HLB, the more hydrophilic it is. - d. Concern concentrations were determined from measured or estimated aquatic toxicity data according to standard EPA protocols. Estimations were based on structure activity relationships and nearest analog data. - e. Qualitative biodegradation half-lives were estimated using the BIOWIN program, which is included in the Estimation Programs Interface developed by Syracuse Research Corporation. - f. The cmc for this material is reported on its product data sheet found at Huntsman Corporation's website, www.huntsman.com. - g. The cmcs for these materials are reported in the December 1997 ABRF detergent table, located at www.abrf.org/ABRFNews/1997/December1997/dec97Table.html. - h. Klopotek, B.B.; Kijenski, J. Tenside Surf. Det., 1997, 34, 174-177.